skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Nicholls, Sarah"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Anthropogenic climate change is projected to drive increases in climate extremes and climate-sensitive ecosystem disturbances such as wildfire with enormous economic impacts. Understanding spatial and temporal patterns of risk to property values from climate-sensitive disturbances at national and regional scales and from multiple disturbances is urgently needed to inform risk management and policy efforts. Here, we combine models for three major climate-sensitive disturbances (i.e., wildfire, climate stress-driven tree mortality, and insect-driven tree mortality), future climate projections of these disturbances, and high-resolution property values data to quantify the spatiotemporal exposure of property values to disturbance across the contiguous United States (US). We find that property values exposed to these climate-sensitive disturbances increase sharply in future climate scenarios, particularly in existing high-risk regions of the western US, and that novel exposure risks emerge in some currently lower-risk regions such as the southeast and Great Lakes regions. Climate policy that drives emissions towards low-to-moderate climate futures avoids large increases in disturbance risk exposure compared to high emissions scenarios. Our results provide an important large-scale assessment of climate-sensitive disturbance risk to property values to help inform land management and climate adaptation efforts. 
    more » « less